JacobiNeRF: NeRF Shaping with Mutual Information Gradient

CVPR 2023

1Tsinghua University, 2Stanford University 3The University of Hong Kong 4NVIDIA Research 5Shanghai AI Laboratory 6Shanghai Qizhi Institute 7Google Research
Interpolate start reference image.

We shape the NeRF so that when the scene is perturbed along the gradient of a point, a resonance emerges with other points having high mutual information.

JacobiNeRF supports user interactions with 3D Scenes through 2D views – as, for example, in selecting objects or parts, editing the appearance of scene entities, and propagating labels to the whole 3D scene given sparse annotations.

Abstract

We propose a method that trains a neural radiance field (NeRF) to encode not only the appearance of the scene but also semantic correlations between scene points, regions, or entities -- aiming to capture their mutual co-variation patterns. In contrast to the traditional first-order photometric reconstruction objective, our method explicitly regularizes the learning dynamics to align the Jacobians of highly-correlated entities, which proves to maximize the mutual information between them under random scene perturbations. By paying attention to this second-order information, we can shape a NeRF to express semantically meaningful synergies when the network weights are changed by a delta along the gradient of a single entity, region, or even a point. To demonstrate the merit of this mutual information modeling, we leverage the coordinated behavior of scene entities that emerges from our shaping to perform label propagation for semantic and instance segmentation. Our experiments show that a JacobiNeRF is more efficient in propagating annotations among 2D pixels and 3D points compared to NeRFs without mutual information shaping, especially in extremely sparse label regimes -- thus reducing annotation burden. The same machinery can further be used for entity selection or scene modifications.

Video

BibTeX

@inproceedings{xu2023jacobinerf,
      title={JacobiNeRF: NeRF Shaping with Mutual Information Gradients},
      author={Xu, Xiaomeng and Yang, Yanchao and Mo, Kaichun and Pan, Boxiao and Yi, Li and Guibas, Leonidas},
      booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
      pages={16498--16507},
      year={2023}
    }